On a generalisation of the Dipper-James-Murphy conjecture

Jun Hu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 3
  • Captures
    • Readers: 2
see details

摘要

Let r,n be positive integers. Let e be 0 or an integer bigger than 1. Let v1,...,vr∈Z/eZ and Kr(n) be the set of Kleshchev r-partitions of n with respect to (e;Q), where Q:=(v1,...,vr). The Dipper-James-Murphy conjecture asserts that Kr(n) is the same as the set of (Q,e)-restricted bipartitions of n if r=2. In this paper we consider an extension of this conjecture to the case where r>2. We prove that any multi-core Λ=(Λ(1),...,Λ(r)) in Kr(n) is a (Q,e)-restricted r-partition. As a consequence, we show that in the case e=0, Kr(n) coincides with the set of (Q,e)-restricted r-partitions of n and also coincides with the set of ladder r-partitions of n.

源语言英语
页(从-至)78-93
页数16
期刊Journal of Combinatorial Theory. Series A
118
1
DOI
出版状态已出版 - 1月 2011

指纹

探究 'On a generalisation of the Dipper-James-Murphy conjecture' 的科研主题。它们共同构成独一无二的指纹。

引用此

Hu, J. (2011). On a generalisation of the Dipper-James-Murphy conjecture. Journal of Combinatorial Theory. Series A, 118(1), 78-93. https://doi.org/10.1016/j.jcta.2009.12.010