Normalized mutual information feature selection for electroencephalogram data based on grassberger entropy estimator

Xiaowei Zhang, Yuan Yao, Manman Wang, Jian Shen, Lei Feng, Bin Hu*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Recently, Electroencephalogram (EEG) has become increasingly important in the role of psychiatric diagnosis and emotion recognition. However, many irrelevant features make it difficult to identify patterns accurately. Obtaining valid features from electroencephalogram can improve the classification and generalization performance. In this paper, an improved normalized mutual information feature selection algorithm which is based on Grassberger entropy estimator (G-NMIFS) is proposed for EEG data. We employ the k-Nearest Neighbor (kNN), Support Vector Machine (SVM), and Naïve Bayes methods to compare the proposed approach with normalized mutual information feature selection using Naïve estimator and Miller-adjust method. Experimental results on two EEG data sets show that the proposed method can select relevant subsets and improve classification performance effectively.

源语言英语
主期刊名Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017
编辑Illhoi Yoo, Jane Huiru Zheng, Yang Gong, Xiaohua Tony Hu, Chi-Ren Shyu, Yana Bromberg, Jean Gao, Dmitry Korkin
出版商Institute of Electrical and Electronics Engineers Inc.
648-652
页数5
ISBN(电子版)9781509030491
DOI
出版状态已出版 - 15 12月 2017
已对外发布
活动2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017 - Kansas City, 美国
期限: 13 11月 201716 11月 2017

出版系列

姓名Proceedings - 2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017
2017-January

会议

会议2017 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2017
国家/地区美国
Kansas City
时期13/11/1716/11/17

指纹

探究 'Normalized mutual information feature selection for electroencephalogram data based on grassberger entropy estimator' 的科研主题。它们共同构成独一无二的指纹。

引用此