Nonlinearity Activated Noise-Tolerant Zeroing Neural Network for Real-Time Varying Matrix Inversion

Wenhui Duan, Long Jin, Bin Hu*, Huiyan Lu, Mei Liu, Kene Li, Lin Xiao, Chenfu Yi

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

6 引用 (Scopus)

摘要

Real-time varying matrix inversion is widely used in the fields of science and engineering, e.g., image processing, signal processing and robot technology, etc. In this paper, a nonlinearity activated noise-tolerant zeroing neural network (NANTZNN) is constructed and employed to the time-dependent matrix inversion in the noisy environment. Compared with the gradient approach related neural network (GNN) and the existing noise-tolerant zeroing neural network (NTZNN), the proposed NANTZNN model is activated by specially-constructed nonlinear activation functions, and thus possesses the better convergence performance. Additionally, theoretical analyses are provided to guarantee the convergence of the proposed model. Finally, simulations are conducted to demonstrate the efficiency and superiority of the NANTZNN model for time-dependent matrix inversion, as compared with the NTZNN model.

源语言英语
主期刊名Proceedings of the 37th Chinese Control Conference, CCC 2018
编辑Xin Chen, Qianchuan Zhao
出版商IEEE Computer Society
3117-3122
页数6
ISBN(电子版)9789881563941
DOI
出版状态已出版 - 5 10月 2018
已对外发布
活动37th Chinese Control Conference, CCC 2018 - Wuhan, 中国
期限: 25 7月 201827 7月 2018

出版系列

姓名Chinese Control Conference, CCC
2018-July
ISSN(印刷版)1934-1768
ISSN(电子版)2161-2927

会议

会议37th Chinese Control Conference, CCC 2018
国家/地区中国
Wuhan
时期25/07/1827/07/18

指纹

探究 'Nonlinearity Activated Noise-Tolerant Zeroing Neural Network for Real-Time Varying Matrix Inversion' 的科研主题。它们共同构成独一无二的指纹。

引用此