New family of room temperature quantum spin Hall insulators in two-dimensional germanene films

Run Wu Zhang, Wei Xiao Ji, Chang Wen Zhang*, Sheng Shi Li, Ping Li, Pei Ji Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

75 引用 (Scopus)

摘要

Searching for two-dimensional (2D) group IV films with high structural stability and large-gaps is crucial for the realization of a dissipationless transport edge state using the quantum spin Hall effect (QSHE). Based on first-principles calculations, we predict that 2D germanene decorated with ethynyl-derivatives (GeC2X; X = H, F, Cl, Br, I) can be a topological insulator (TI) with a large band-gap for room-temperature applications. Both GeC2I and GeC2Br films are intrinsic TIs with a gap reaching up to 180 meV over a wide range, while GeC2H, GeC2F, and GeC2Cl transform from trivial to nontrivial phases under tensile strain. This topological characteristic can be confirmed by s-pxy band inversion, topological invariant Z2, and time-reversal symmetry protected helical edge states. Notably, the characteristic properties of edge states, such as the Fermi velocity and edge shape, can be tuned by edge modifications. Furthermore, we demonstrate that the h-BN sheet is an ideal substrate for the experimental realization of GeC2X, maintaining their nontrivial topology. Considering their higher thermo-stability, these GeC2X films may be good QSHE platforms for topological electronic device design and fabrication in spintronics.

源语言英语
页(从-至)2088-2094
页数7
期刊Journal of Materials Chemistry C
4
10
DOI
出版状态已出版 - 14 3月 2016
已对外发布

指纹

探究 'New family of room temperature quantum spin Hall insulators in two-dimensional germanene films' 的科研主题。它们共同构成独一无二的指纹。

引用此