Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface

Xu Song, Lingling Huang, Lin Sun, Xiaomeng Zhang, Ruizhe Zhao, Xiaowei Li, Jia Wang, Benfeng Bai, Yongtian Wang

科研成果: 期刊稿件文章同行评审

38 引用 (Scopus)

摘要

Metasurfaces have recently intrigued extensive interest due to their ability to locally manipulate electromagnetic waves, which provide great feasibility for tailoring both propagation waves and surface plasmon polaritons (SPPs). Manipulation of SPPs with arbitrary complex fields is an important issue in integrated nanophotonics due to their capability of guiding waves with subwavelength footprints. Here, an approach with metasurfaces composed of nanoaperture arrays is proposed and experimentally demonstrated which can effectively manipulate the complex amplitude of SPPs in the near-field regime. Tailoring the azimuthal angles of individual nanoapertures and simultaneously tuning their geometric parameters, the phase and amplitude are controlled based on the Pancharatnam-Berry phases and their individual transmission coefficients. For the verification of the concept, Airy plasmons and axisymmetric Airy-SPPs are generated. The results of numerical simulations and near-field imaging are consistent with each other. Besides the rigorous simulations, we applied a 2D dipole analysis for additional analysis. This strategy of complex amplitude manipulation with metasurfaces can be used for potential applications in plasmonic beam shaping, integrated optoelectronic systems, and surface wave holography.

源语言英语
文章编号073104
期刊Applied Physics Letters
112
7
DOI
出版状态已出版 - 12 2月 2018

指纹

探究 'Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface' 的科研主题。它们共同构成独一无二的指纹。

引用此