摘要
Human body motion includes the complex spatiotemporal information and human body motion prediction is useful in the human-computer interaction. An Encoder-Multiple-Recurrent-Decoder (EMRD) model to learn human action from sensor data and predict the later ones is proposed in this paper. The kernel of this method is recurrent neural networks (RNN). The model is used to predict the next several frames of a set of sensor data, which is continuous data but is pre-processed by embedding method proposed in this paper. EMRD extends the previous Encoder-Recurrent-Decoder (ERD) models and Long Short Terms Memory (LSTM) model which are used in the video human body movement prediction.
源语言 | 英语 |
---|---|
主期刊名 | Proceedings - 2017 International Conference on Virtual Reality and Visualization, ICVRV 2017 |
出版商 | Institute of Electrical and Electronics Engineers Inc. |
页 | 419-420 |
页数 | 2 |
ISBN(电子版) | 9781538626368 |
DOI | |
出版状态 | 已出版 - 2 7月 2017 |
活动 | 7th International Conference on Virtual Reality and Visualization, ICVRV 2017 - Zhengzhou, 中国 期限: 21 10月 2017 → 22 10月 2017 |
出版系列
姓名 | Proceedings - 2017 International Conference on Virtual Reality and Visualization, ICVRV 2017 |
---|
会议
会议 | 7th International Conference on Virtual Reality and Visualization, ICVRV 2017 |
---|---|
国家/地区 | 中国 |
市 | Zhengzhou |
时期 | 21/10/17 → 22/10/17 |
指纹
探究 'Multiple RNN method to prediction human action with sensor data' 的科研主题。它们共同构成独一无二的指纹。引用此
Chen, X., Yu, Y., & Li, F. (2017). Multiple RNN method to prediction human action with sensor data. 在 Proceedings - 2017 International Conference on Virtual Reality and Visualization, ICVRV 2017 (页码 419-420). 文章 8719119 (Proceedings - 2017 International Conference on Virtual Reality and Visualization, ICVRV 2017). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ICVRV.2017.00104