Multi-task Total Least-Squares Adaptation over Networks

Zhongfa Wang, Lijuan Jia*, Zijiang Yang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

Collaborative parameter estimation is a significant application of distributed multi-agent network. In practical scenarios, there are many multi-task oriented applications that the networks have multiple optimum parameter vectors to be estimated. Considering the condition that the input and output of agents are corrupted by additive noises, the network can be modeled as the multi-task errors-in-variables (M-EIV) problem. Total least-squares (TLS) method is a typical solution to the EIV problem for it can minimize the perturbation both in input and output data. In this paper, we study the problem of unbiased parameter estimation over multi-task networks whose nodes' inputs are corrupted by white noises. We propose a novel multi-task TLS (M-TLS) algorithm which can reach consistent unbiased estimation. Simulation results show that the proposed algorithms can achieve consistent and unbiased estimation.

源语言英语
主期刊名Proceedings of the 37th Chinese Control Conference, CCC 2018
编辑Xin Chen, Qianchuan Zhao
出版商IEEE Computer Society
4300-4304
页数5
ISBN(电子版)9789881563941
DOI
出版状态已出版 - 5 10月 2018
活动37th Chinese Control Conference, CCC 2018 - Wuhan, 中国
期限: 25 7月 201827 7月 2018

出版系列

姓名Chinese Control Conference, CCC
2018-July
ISSN(印刷版)1934-1768
ISSN(电子版)2161-2927

会议

会议37th Chinese Control Conference, CCC 2018
国家/地区中国
Wuhan
时期25/07/1827/07/18

指纹

探究 'Multi-task Total Least-Squares Adaptation over Networks' 的科研主题。它们共同构成独一无二的指纹。

引用此