Multi-modality movie scene detection using Kernel Canonical Correlation Analysis

Guangyu Gao*, Huadong Ma

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

6 引用 (Scopus)

摘要

Scene detection is the fundamental step for efficient accessing and browsing videos. In this paper, we propose to segment movie into scenes which utilizes fused visual and audio features. The movie is first segmented into shots by an accelerating algorithm, and the key frames are extracted later. While feature movies are often filmed in open and dynamic environments using moving cameras and have continuously changing contents, we focus on the association extraction of visual and audio features. Then, based on the Kernel Canonical Correlation Analysis (KCCA), all these features are fused for scene detection. Finally, spatial-temporal coherent shots construct the similarity graph which is partitioned to generate the scene boundaries. We conduct extensive experiments on several movies, and the results show that our approach can efficiently detect the scene boundaries with a satisfactory performance.

源语言英语
主期刊名ICPR 2012 - 21st International Conference on Pattern Recognition
3074-3077
页数4
出版状态已出版 - 2012
已对外发布
活动21st International Conference on Pattern Recognition, ICPR 2012 - Tsukuba, 日本
期限: 11 11月 201215 11月 2012

出版系列

姓名Proceedings - International Conference on Pattern Recognition
ISSN(印刷版)1051-4651

会议

会议21st International Conference on Pattern Recognition, ICPR 2012
国家/地区日本
Tsukuba
时期11/11/1215/11/12

指纹

探究 'Multi-modality movie scene detection using Kernel Canonical Correlation Analysis' 的科研主题。它们共同构成独一无二的指纹。

引用此