Multi-branch regression network for building classification using remote sensing images

Yuanyuan Gui, Xiang Li, Wei Li*, Anzhi Yue

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

Convolutional neural networks (CNN) are widely used for processing high-resolution remote sensing images like segmentation or classification, and have been demonstrated excellent performance in recent years. In this paper, a novel classification framework based on segmentation method, called Multi-branch regression network (named as MBR-Net) is proposed. The proposed method can generate multiple losses rely on training images in different size of information. In addition, a complete training strategy for classifying remote sensing images, which can reduce the influence of uneven samples is also developed. Experimental results with Inrial aerial dataset demonstrate that the proposed framework can provide much better results compared to state-of-the-art U-Net and generate fine-grained prediction maps.

源语言英语
主期刊名2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9781538684795
DOI
出版状态已出版 - 8 10月 2018
已对外发布
活动10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018 - Beijing, 中国
期限: 19 8月 201820 8月 2018

出版系列

姓名2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018

会议

会议10th IAPR Workshop on Pattern Recognition in Remote Sensing, PRRS 2018
国家/地区中国
Beijing
时期19/08/1820/08/18

指纹

探究 'Multi-branch regression network for building classification using remote sensing images' 的科研主题。它们共同构成独一无二的指纹。

引用此