跳到主要导航
跳到搜索
跳到主要内容
北京理工大学 首页
English
中文
首页
师资队伍
研究单位
科研成果
奖项
按专业知识、名称或附属进行搜索
Multi-Agent Power and Resource Allocation for D2D Communications: A Deep Reinforcement Learning Approach
Honglin Xiang
*
, Jingyi Peng,
Zhen Gao
, Lingjie Li, Yang Yang
*
此作品的通讯作者
前沿交叉科学研究院
Beijing University of Posts and Telecommunications
China Industrial Control Systems Cyber Emergency Response Team
Southeast University, Nanjing
科研成果
:
书/报告/会议事项章节
›
会议稿件
›
同行评审
3
引用 (Scopus)
综述
指纹
指纹
探究 'Multi-Agent Power and Resource Allocation for D2D Communications: A Deep Reinforcement Learning Approach' 的科研主题。它们共同构成独一无二的指纹。
分类
加权
按字母排序
Computer Science
multi agent
100%
Resource Allocation
100%
Deep Reinforcement Learning
100%
Learning Approach
100%
time-delay
100%
Achievable Rate
100%
Power Allocation
100%
Delay Constraint
100%
Resource Allocation Scheme
33%
Wearable Device
33%
Reinforcement Learning
33%
Spectrum Resource
33%
Distributed Algorithm
33%
Performance Improvement
33%
Multiple Agents
33%
Channel Interference
33%
Deep Q-Network
33%
Transmission Time
33%
Smartphone Device
33%
Engineering
Achievable Rate
100%
Reinforcement Learning
100%
Learning Approach
100%
Delay Constraint
100%
Demonstrates
33%
Transmissions
33%
Simulation Result
33%
Obtains
33%
Power Control
33%
Joints (Structural Components)
33%
Delay Time
33%
Learning Algorithm
33%
Wearable Sensor
33%
Performance Improvement
33%
Spectrum Resource
33%
Channel Interference
33%