Moving-horizon dynamic power system state estimation using semidefinite relaxation

Gang Wang, Seung Jun Kim, Georgios B. Giannakis

科研成果: 书/报告/会议事项章节会议稿件同行评审

8 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 8
  • Captures
    • Readers: 17
see details

摘要

Accurate power system state estimation (PSSE) is an essential prerequisite for reliable operation of power systems. Different from static PSSE, dynamic PSSE can exploit past measurements based on a dynamical state evolution model, offering improved accuracy and state predictability. A key challenge is the nonlinear measurement model, which is often tackled using linearization, despite divergence and local optimality issues. In this work, a moving-horizon estimation (MHE) strategy is advocated, where model nonlinearity can be accurately captured with strong performance guarantees. To mitigate local optimality, a semidefinite relaxation approach is adopted, which often provides solutions close to the global optimum. Numerical tests show that the proposed method can markedly improve upon an extended Kalman filter (EKF)-based alternative.

源语言英语
主期刊名2014 IEEE PES General Meeting / Conference and Exposition
出版商IEEE Computer Society
版本October
ISBN(电子版)9781479964154
DOI
出版状态已出版 - 29 10月 2014
活动2014 IEEE Power and Energy Society General Meeting - National Harbor, 美国
期限: 27 7月 201431 7月 2014

出版系列

姓名IEEE Power and Energy Society General Meeting
编号October
2014-October
ISSN(印刷版)1944-9925
ISSN(电子版)1944-9933

会议

会议2014 IEEE Power and Energy Society General Meeting
国家/地区美国
National Harbor
时期27/07/1431/07/14

指纹

探究 'Moving-horizon dynamic power system state estimation using semidefinite relaxation' 的科研主题。它们共同构成独一无二的指纹。

引用此

Wang, G., Kim, S. J., & Giannakis, G. B. (2014). Moving-horizon dynamic power system state estimation using semidefinite relaxation. 在 2014 IEEE PES General Meeting / Conference and Exposition (October 编辑). 文章 6939925 (IEEE Power and Energy Society General Meeting; 卷 2014-October, 号码 October). IEEE Computer Society. https://doi.org/10.1109/PESGM.2014.6939925