Modified CRF algorithm for dynamic hand gesture recognition

Liling Ma*, Jing Zhang, Junzheng Wang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

8 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 8
  • Captures
    • Readers: 13
see details

摘要

In this paper, a modified CRF algorithm is proposed for recognition of vision-based dynamic hand gestures. This algorithm abandons the condition necessary for Hidden Markov Models that the action sequences must be independent. And dynamic hand gestures are classified by some most representative segments (MRSs) rather than the full gestures themselves. First, the Longest Common Sequence (LCS) is employed to extract the most representative segments from dynamic gestures which are then used to train Conditional Random Fields (CRF). In a recognition stage, MRS of the unclassified trajectory is sent to CRF. Experiment results show that this algorithm (defined as MRS-CRF) has significant advantages over HMMs in accuracy and CRF itself in simplification.

源语言英语
主期刊名Proceedings of the 33rd Chinese Control Conference, CCC 2014
编辑Shengyuan Xu, Qianchuan Zhao
出版商IEEE Computer Society
4763-4767
页数5
ISBN(电子版)9789881563842
DOI
出版状态已出版 - 11 9月 2014
活动Proceedings of the 33rd Chinese Control Conference, CCC 2014 - Nanjing, 中国
期限: 28 7月 201430 7月 2014

出版系列

姓名Proceedings of the 33rd Chinese Control Conference, CCC 2014
ISSN(印刷版)1934-1768
ISSN(电子版)2161-2927

会议

会议Proceedings of the 33rd Chinese Control Conference, CCC 2014
国家/地区中国
Nanjing
时期28/07/1430/07/14

指纹

探究 'Modified CRF algorithm for dynamic hand gesture recognition' 的科研主题。它们共同构成独一无二的指纹。

引用此

Ma, L., Zhang, J., & Wang, J. (2014). Modified CRF algorithm for dynamic hand gesture recognition. 在 S. Xu, & Q. Zhao (编辑), Proceedings of the 33rd Chinese Control Conference, CCC 2014 (页码 4763-4767). 文章 6895744 (Proceedings of the 33rd Chinese Control Conference, CCC 2014). IEEE Computer Society. https://doi.org/10.1109/ChiCC.2014.6895744