Modeling study on sessile water droplet during freezing with the consideration of gravity, supercooling, and volume expansion effects

Menglong Lu, Mengjie Song*, Xiaoling Pang, Chaobin Dang, Long Zhang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

31 引用 (Scopus)

摘要

Droplet freezing phenomenon widely exists in many fields, including aerospace, power production, and cryopreservation, etc. Considering the effects of supercooling, gravity and volume expansion, a theoretical model of droplet freezing is developed. A good agreement is found between the predicted results of freezing front radius and height and experiments for both hydrophilic and hydrophobic surfaces. The developed model also shows good performance in predicting freezing times. The average prediction deviation is 7.63%, and more than 93% simulation results show the deviation within ±15%. Gravity has a more obvious influence on final freezing times with the increase of cold plate temperature, contact angle, and droplet volume. For the droplet freezing process under various contact angles and cold plate temperatures, the fastest average temperature change rates inside water droplet are -2.48 °C/s and -1.72 °C/s, respectively. This study is beneficial for the better understanding of the droplet solidification as well as the optimization of refrigeration and defrosting technologies.

源语言英语
文章编号103909
期刊International Journal of Multiphase Flow
147
DOI
出版状态已出版 - 2月 2022

指纹

探究 'Modeling study on sessile water droplet during freezing with the consideration of gravity, supercooling, and volume expansion effects' 的科研主题。它们共同构成独一无二的指纹。

引用此