Minmax-concave total variation denoising

Huiqian Du*, Yilin Liu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

28 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 28
  • Captures
    • Readers: 4
see details

摘要

Total variation (TV) denoising is a commonly used method for recovering 1-D signal or 2-D image from additive white Gaussian noise observation. In this paper, we define the Moreau enhanced function of L1 norm as Φα(x) and introduce the minmax-concave TV (MCTV) in the form of Φα(Dx) , where D is the finite difference operator. We present that MCTV approaches ‖ Dx‖ 0 if the non-convexity parameter α is chosen properly and apply it to denoising problem. MCTV can strongly induce the signal sparsity in gradient domain, and moreover, its form allows us to develop corresponding fast optimization algorithms. We also prove that although this regularization term is non-convex, the cost function can maintain convexity by specifying α in a proper range. Experimental results demonstrate the effectiveness of MCTV for both 1-D signal and 2-D image denoising.

源语言英语
页(从-至)1027-1034
页数8
期刊Signal, Image and Video Processing
12
6
DOI
出版状态已出版 - 1 9月 2018

指纹

探究 'Minmax-concave total variation denoising' 的科研主题。它们共同构成独一无二的指纹。

引用此

Du, H., & Liu, Y. (2018). Minmax-concave total variation denoising. Signal, Image and Video Processing, 12(6), 1027-1034. https://doi.org/10.1007/s11760-018-1248-2