Mesoporous TiO2 microparticles formed by the oriented attachment of nanocrystals: A super-durable anode material for sodium-ion batteries

Liming Ling, Ying Bai*, Huali Wang, Qiao Ni, Jiatao Zhang, Feng Wu, Chuan Wu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

29 引用 (Scopus)

摘要

Spindle-shaped anatase TiO2 secondary particles were successfully fabricated via the oriented attachment of primary nanocrystals. By adjusting the concentration of tetrabutyl titanate, the size of the TiO2 nanocrystals and particles could be controlled, resulting in pore evolution. Pores for the random aggregation of secondary particles gradually transformed to nanopores originating from the oriented attachment of the primary nanocrystals, resulting in an excellent micro/nanostructure that increased the performance of a sodium-ion battery. The mesoporous TiO2 microparticle anode, with its unique combination of nanocrystals and uniform nanopores, displays super durability (95 mAh/g after 11,000 cycles at 1 C), high initial efficiency (61.4%), and excellent rate performance (265 and 77 mAh/g at 0.1 and 20 C, respectively). In particular, at slow discharge (0.1 C) and fast charge (5, 50, and 100 C) rates, the anatase TiO2 shows remarkable initial charge capacities of 200, 119, and 56 mAh/g, corresponding to 172, 127, and 56 mAh/g, after 150 cycles, respectively, thus meeting the requirements for fast energy storage. This excellent performance can be attributed to the stability of the material and its high ionic conductivity, resulting from the stable architecture with a mesoporous microstructure and without the random aggregation of secondary particles. A fundamental understanding of the pore structure and controllable pore construction has been proven to be effective in increasing the rate capability and durability of nanostructured electrode materials. [Figure not available: see fulltext.].

源语言英语
页(从-至)1563-1574
页数12
期刊Nano Research
11
3
DOI
出版状态已出版 - 1 3月 2018

指纹

探究 'Mesoporous TiO2 microparticles formed by the oriented attachment of nanocrystals: A super-durable anode material for sodium-ion batteries' 的科研主题。它们共同构成独一无二的指纹。

引用此