Leveraging the Invariant Side of Dynamic Trichomonas Vaginalis via the Fusion of Optical Flow

Liangwei Li*, Xiangzhou Wang, Juanxiu Liu, Lin Liu, Jing Zhang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Trichomoniasis is a common sexually transmitted disease caused by Trichomonas vaginalis and automatic trichomonas vaginalis (TV) detection is a problem of great concern in video object detection. However, existing algorithms are inadequate to identify and localize TV through the microscopic camera efficiently; the defocus, motion blur, resolution and computational efficiency, remain the major problems. To bridge the gap, we propose to learn the invariant side of the dynamic TV by capturing the optical flow. To make use of the motion information, we introduce OF-YOLO, a general-purpose framework for catching hold of the motion feature. We test it on a dataset with 1278 Trichomonas video clips including 51336 frames. Experiment results show how the OF-YOLO significantly boosts the detection performance on real-world scenes.

源语言英语
主期刊名2023 6th International Conference on Artificial Intelligence and Big Data, ICAIBD 2023
出版商Institute of Electrical and Electronics Engineers Inc.
668-672
页数5
ISBN(电子版)9781665491259
DOI
出版状态已出版 - 2023
已对外发布
活动6th International Conference on Artificial Intelligence and Big Data, ICAIBD 2023 - Chengdu, 中国
期限: 26 5月 202329 5月 2023

出版系列

姓名2023 6th International Conference on Artificial Intelligence and Big Data, ICAIBD 2023

会议

会议6th International Conference on Artificial Intelligence and Big Data, ICAIBD 2023
国家/地区中国
Chengdu
时期26/05/2329/05/23

指纹

探究 'Leveraging the Invariant Side of Dynamic Trichomonas Vaginalis via the Fusion of Optical Flow' 的科研主题。它们共同构成独一无二的指纹。

引用此