TY - JOUR
T1 - Large-Scale Synthesis of Nanostructured Carbon-Ti4O7 Hollow Particles as Efficient Sulfur Host Materials for Multilayer Lithium-Sulfur Pouch Cells
AU - Mei, Shilin
AU - Siebert, Andreas
AU - Xu, Yaolin
AU - Quan, Ting
AU - Garcia-Diez, Raul
AU - Bär, Marcus
AU - Härtel, Paul
AU - Abendroth, Thomas
AU - Dörfler, Susanne
AU - Kaskel, Stefan
AU - Lu, Yan
N1 - Publisher Copyright:
© 2022 The Authors. Batteries & Supercaps published by Wiley-VCH GmbH.
PY - 2022/6
Y1 - 2022/6
N2 - Applications of advanced cathode materials with well-designed chemical components and/or optimized nanostructures promoting the sulfur redox kinetics and suppressing the shuttle effect of polysulfides are highly valued. However, in the case of actual lithium-sulfur (Li−S) batteries under practical working conditions, one long-term obstacle still exists, which is mainly due to the difficulties in massive synthesis of such nanomaterials with low cost and ease of control on the nanostructure. Herein, we develop a facile synthesis of carbon coated Ti4O7 hollow nanoparticles (C−Ti4O7) using spherical polymer electrolyte brush as soft template, which is scalable via utilizing a minipilot reactor. The C−Ti4O7 hollow nanoparticles provide strong chemical adsorption to polysulfides through the large polar surface and additional physical confinement by rich micro- & mesopores and have successfully been employed as an efficient sulfur host for multilayer pouch cells. Besides, the sluggish kinetics of the sulfur and lithium sulfide redox mechanism can be improved by the highly conductive Ti4O7 via catalyzation of the conversion of polysulfides. Consequently, the C−Ti4O7 based pouch cell endows a high discharge capacity of 1003 mAh g−1 at 0.05 C, a high-capacity retention of 83.7 % after 100 cycles at 0.1 C, and a high Coulombic efficiency of 97.5 % at the 100th cycle. This work proposes an effective approach to transfer the synthesis of hollow Ti4O7 nanoparticles from lab- to large-scale production, paving the way to explore a wide range of advanced nanomaterials for multilayer Li−S pouch cells.
AB - Applications of advanced cathode materials with well-designed chemical components and/or optimized nanostructures promoting the sulfur redox kinetics and suppressing the shuttle effect of polysulfides are highly valued. However, in the case of actual lithium-sulfur (Li−S) batteries under practical working conditions, one long-term obstacle still exists, which is mainly due to the difficulties in massive synthesis of such nanomaterials with low cost and ease of control on the nanostructure. Herein, we develop a facile synthesis of carbon coated Ti4O7 hollow nanoparticles (C−Ti4O7) using spherical polymer electrolyte brush as soft template, which is scalable via utilizing a minipilot reactor. The C−Ti4O7 hollow nanoparticles provide strong chemical adsorption to polysulfides through the large polar surface and additional physical confinement by rich micro- & mesopores and have successfully been employed as an efficient sulfur host for multilayer pouch cells. Besides, the sluggish kinetics of the sulfur and lithium sulfide redox mechanism can be improved by the highly conductive Ti4O7 via catalyzation of the conversion of polysulfides. Consequently, the C−Ti4O7 based pouch cell endows a high discharge capacity of 1003 mAh g−1 at 0.05 C, a high-capacity retention of 83.7 % after 100 cycles at 0.1 C, and a high Coulombic efficiency of 97.5 % at the 100th cycle. This work proposes an effective approach to transfer the synthesis of hollow Ti4O7 nanoparticles from lab- to large-scale production, paving the way to explore a wide range of advanced nanomaterials for multilayer Li−S pouch cells.
KW - TiO
KW - lithium-sulfur batteries
KW - pouch cell
KW - spherical polyelectrolyte brushes (SPB)
UR - http://www.scopus.com/inward/record.url?scp=85126863892&partnerID=8YFLogxK
U2 - 10.1002/batt.202100398
DO - 10.1002/batt.202100398
M3 - Article
AN - SCOPUS:85126863892
SN - 2566-6223
VL - 5
JO - Batteries and Supercaps
JF - Batteries and Supercaps
IS - 6
M1 - e202100398
ER -