TY - JOUR
T1 - Kalman filter with recursive covariance estimation-Sequentially estimating process noise covariance
AU - Feng, Bo
AU - Fu, Mengyin
AU - Ma, Hongbin
AU - Xia, Yuanqing
AU - Wang, Bo
PY - 2014/11
Y1 - 2014/11
N2 - The Kalman filter has been found to be useful in vast areas. However, it is well known that the successful use of the standard Kalman filter is greatly restricted by the strict requirements on a priori information of the model structure and statistics information of the process, and measurement noises. Generally speaking, the covariance matrix of process noise is harder to be determined than that of the measurement noise by routine experiments, since the statistical property of process noise cannot be obtained directly by collecting a large number of sensor data due to the intrinsic coupling of process noise and system dynamics. Considering such background of wide applications, this paper introduces one algorithm, recursive covariance estimation (RCE) algorithm, to estimate the unknown covariance matrix of noise from a sample of signals corrupted with the noise. Based on this idea, for a class of discrete-time linear-time-invariant systems where the covariance matrix of process noise is completely unknown, a new Kalman filtering algorithm named, Kalman filter with RCE, is presented to resolve this challenging problem of state estimation without the statistical information of process noise, and the rigorous stability analysis is given to show that this algorithm is optimal in the sense that the covariance matrix and state estimations are asymptotically consistent with the ideal Kalman filter when the exact covariance matrix of process noise is completely known a priori. Extensive simulation studies have also verified the theoretical results and the effectiveness of the proposed algorithm.
AB - The Kalman filter has been found to be useful in vast areas. However, it is well known that the successful use of the standard Kalman filter is greatly restricted by the strict requirements on a priori information of the model structure and statistics information of the process, and measurement noises. Generally speaking, the covariance matrix of process noise is harder to be determined than that of the measurement noise by routine experiments, since the statistical property of process noise cannot be obtained directly by collecting a large number of sensor data due to the intrinsic coupling of process noise and system dynamics. Considering such background of wide applications, this paper introduces one algorithm, recursive covariance estimation (RCE) algorithm, to estimate the unknown covariance matrix of noise from a sample of signals corrupted with the noise. Based on this idea, for a class of discrete-time linear-time-invariant systems where the covariance matrix of process noise is completely unknown, a new Kalman filtering algorithm named, Kalman filter with RCE, is presented to resolve this challenging problem of state estimation without the statistical information of process noise, and the rigorous stability analysis is given to show that this algorithm is optimal in the sense that the covariance matrix and state estimations are asymptotically consistent with the ideal Kalman filter when the exact covariance matrix of process noise is completely known a priori. Extensive simulation studies have also verified the theoretical results and the effectiveness of the proposed algorithm.
KW - Kalman filter
KW - process noise covariance matrix
KW - recursive covariance estimating
KW - stability analysis
KW - unknown covariance matrix
UR - http://www.scopus.com/inward/record.url?scp=84902354905&partnerID=8YFLogxK
U2 - 10.1109/TIE.2014.2301756
DO - 10.1109/TIE.2014.2301756
M3 - Article
AN - SCOPUS:84902354905
SN - 0278-0046
VL - 61
SP - 6253
EP - 6263
JO - IEEE Transactions on Industrial Electronics
JF - IEEE Transactions on Industrial Electronics
IS - 11
M1 - 6719478
ER -