TY - JOUR
T1 - K-means cluster algorithm applied for geometric shaping based on iterative polar modulation in inter-data centers optical interconnection
AU - Sheng, Xia
AU - Zhang, Qi
AU - Gao, Ran
AU - Guo, Dong
AU - Jing, Zexuan
AU - Xin, Xiangjun
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/10/1
Y1 - 2021/10/1
N2 - The demand of delivering various services is driving inter-data centers optical interconnection towards 400 G/800 G, which calls for increasing capacity and spectrum efficiency. The aim of this study is to effectively increase capacity while also improving nonlinear noise anti-interference. Hence, this paper presents a state-of-the-art scheme that applies the K-means cluster algorithm in geometric shaping based on iterative polar modulation (IPM). A coherent optical communication simulation system was established to demonstrate the performance of our proposal. The investigation reveals that the gap between IPM and Shannon limit has significantly narrowed in terms of mutual information. Moreover, when compared with IPM and QAM using the blind phase searching under the same order at HD-FEC threshold, the IPM-16 using the K-means algorithm achieves 0.9 dB and 1.7 dB gain; the IPM-64 achieves 0.3 dB and 1.1 dB gain, and the IPM-256 achieves 0.4 dB and 0.8 dB gain. The robustness of nonlinear noise and high capacity enable this state-of-the-art scheme to be used as an optional modulation format not only for inter-data centers optical interconnection but also for any high speed, long distance optical fiber communication system.
AB - The demand of delivering various services is driving inter-data centers optical interconnection towards 400 G/800 G, which calls for increasing capacity and spectrum efficiency. The aim of this study is to effectively increase capacity while also improving nonlinear noise anti-interference. Hence, this paper presents a state-of-the-art scheme that applies the K-means cluster algorithm in geometric shaping based on iterative polar modulation (IPM). A coherent optical communication simulation system was established to demonstrate the performance of our proposal. The investigation reveals that the gap between IPM and Shannon limit has significantly narrowed in terms of mutual information. Moreover, when compared with IPM and QAM using the blind phase searching under the same order at HD-FEC threshold, the IPM-16 using the K-means algorithm achieves 0.9 dB and 1.7 dB gain; the IPM-64 achieves 0.3 dB and 1.1 dB gain, and the IPM-256 achieves 0.4 dB and 0.8 dB gain. The robustness of nonlinear noise and high capacity enable this state-of-the-art scheme to be used as an optional modulation format not only for inter-data centers optical interconnection but also for any high speed, long distance optical fiber communication system.
KW - Inter-data centers optical interconnection
KW - Iterative polar modulation
KW - K-means cluster algorithm
UR - http://www.scopus.com/inward/record.url?scp=85116287707&partnerID=8YFLogxK
U2 - 10.3390/electronics10192417
DO - 10.3390/electronics10192417
M3 - Article
AN - SCOPUS:85116287707
SN - 2079-9292
VL - 10
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 19
M1 - 2417
ER -