Incorporating target language semantic roles into a string-to-tree translation model

Chao Su*, Yu hang Guo, He yan Huang, Shu min Shi, Chong Feng

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

The string-to-tree model is one of the most successful syntax-based statistical machine translation (SMT) models. It models the grammaticality of the output via target-side syntax. However, it does not use any semantic information and tends to produce translations containing semantic role confusions and error chunk sequences. In this paper, we propose two methods to use semantic roles to improve the performance of the string-to-tree translation model: (1) adding role labels in the syntax tree; (2) constructing a semantic role tree, and then incorporating the syntax information into it. We then perform string-to-tree machine translation using the newly generated trees. Our methods enable the system to train and choose better translation rules using semantic information. Our experiments showed significant improvements over the state-of-the-art string-to-tree translation system on both spoken and news corpora, and the two proposed methods surpass the phrase-based system on large-scale training data.

源语言英语
页(从-至)1534-1542
页数9
期刊Frontiers of Information Technology and Electronic Engineering
18
10
DOI
出版状态已出版 - 1 10月 2017

指纹

探究 'Incorporating target language semantic roles into a string-to-tree translation model' 的科研主题。它们共同构成独一无二的指纹。

引用此