Hygroscopic property of inorganic salts in atmospheric aerosols measured with physisorption analyzer

Qing Nuan Zhang, Li Jun Zhao, See Hua Chen, Xin Guo, Ye Mei Luan*, Yun Hong Zhang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

19 引用 (Scopus)

摘要

Hygroscopicity is capable of significantly affecting atmospheric visibility, radiative forcing, and cloud condensation nuclei process. Herein, a physisorption analyzer was adopted to determine the hygroscopicity of inorganic salt particles in atmospheric aerosols (e.g., NaNO3, NaClO4, MgSO4, K3PO4, K2HPO4, and KH2PO4) at 298 K. By regulating the ambient relative humidity (RH), qualitative and quantitative information of the mentioned particles in humidifying and dehumidifying cycles was acquired. The deliquescence relative humidity (DRH) and efflorescence relative humidity (ERH) were measured, and supersaturation was observed and recorded during the dehumidification process. The water-to-salt molar ratios (WSR) of the mentioned inorganic salts depending on RH were determined, and the hygroscopic results of NaNO3 and NaClO4 particles were well consistent with the results achieved with other methods or by theoretical prediction. This study fitted WSR-to-RH equations suitable for NaNO3, NaClO4, MgSO4, K3PO4, and K2HPO4 particles. The adsorption heats for monolayer water molecules in the mentioned inorganic salt particles are calculated. The present study lays a solid foundation for gaining insights into the effects of RH on atmospheric aerosols.

源语言英语
文章编号118171
期刊Atmospheric Environment
247
DOI
出版状态已出版 - 15 2月 2021

指纹

探究 'Hygroscopic property of inorganic salts in atmospheric aerosols measured with physisorption analyzer' 的科研主题。它们共同构成独一无二的指纹。

引用此