Hybrid Transformer Network for Change Detection Under Self-Supervised Pretraining

Yongjing Cui, Yin Zhuang, Shan Dong, Xinyi Zhang, Peng Gao, He Chen*, Liang Chen

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

This paper presents a Siamese network architecture based on a multi-scale hybrid convolution-Transformer (CTUNet) for Change Detection (CD) in a pair of co-registered optical remote sensing images. Different form CD frameworks based on convolution neural networks (CNNs) and pure Transformer networks, this method combines a convolution-Transformer hybrid encoder with a multi-scale change information extraction decoder in a Siamese network architecture. It overcomes the inherent limitations of CNN and Transformer and effectively integrates the multi-scale information required for accurate CD. To learn better discriminative representations from various scales, we propose a masked auto-encoder scheme (CTMAE) to adapt to building targets with varying morphological scales, further unleashing the potential of CTUNet. Experiments on two CD datasets show that the proposed self-supervised pre-trained hybrid convolution-Transformer CTUNet architecture achieves better CD performance than previous methods.

源语言英语
主期刊名IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
6652-6655
页数4
ISBN(电子版)9798350320107
DOI
出版状态已出版 - 2023
活动2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023 - Pasadena, 美国
期限: 16 7月 202321 7月 2023

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)
2023-July

会议

会议2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023
国家/地区美国
Pasadena
时期16/07/2321/07/23

指纹

探究 'Hybrid Transformer Network for Change Detection Under Self-Supervised Pretraining' 的科研主题。它们共同构成独一无二的指纹。

引用此