Human Pose Transfer with Augmented Disentangled Feature Consistency

Kun Wu, Chengxiang Yin, C. H.E. Zhengping*, B. O. Jiang, Jian Tang*, Zheng Guan, Gangyi Ding

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

Deep generative models have made great progress in synthesizing images with arbitrary human poses and transferring the poses of one person to others. Though many different methods have been proposed to generate images with high visual fidelity, the main challenge remains and comes from two fundamental issues: pose ambiguity and appearance inconsistency. To alleviate the current limitations and improve the quality of the synthesized images, we propose a pose transfer network with augmented Disentangled Feature Consistency (DFC-Net) to facilitate human pose transfer. Given a pair of images containing the source and target person, DFC-Net extracts pose and static information from the source and target respectively, then synthesizes an image of the target person with the desired pose from the source. Moreover, DFC-Net leverages disentangled feature consistency losses in the adversarial training to strengthen the transfer coherence and integrates a keypoint amplifier to enhance the pose feature extraction. With the help of the disentangled feature consistency losses, we further propose a novel data augmentation scheme that introduces unpaired support data with the augmented consistency constraints to improve the generality and robustness of DFC-Net. Extensive experimental results on Mixamo-Pose and EDN-10k have demonstrated DFC-Net achieves state-of-the-art performance on pose transfer.

源语言英语
文章编号3
期刊ACM Transactions on Intelligent Systems and Technology
15
1
DOI
出版状态已出版 - 19 12月 2023

指纹

探究 'Human Pose Transfer with Augmented Disentangled Feature Consistency' 的科研主题。它们共同构成独一无二的指纹。

引用此