摘要
A series of mesoporous graphitic carbon nitride (mg-C3N4) materials have been prepared with urea and tetraethylorthosilicate (TEOS) as the precursors, which were thermally polycondensed to obtain the g-C3N4/silica composites, after silica was removed, mg-C3N4 with large surface area (170 m2 g-1) was successfully prepared. Excitingly, TEOS did not only act as a mesoporous-directing agent but also as the promoter for the urea polycondensation to g-C3N4, which made the urea polycondensation proceed at relatively low temperature. Thus, volatilization or/and decomposition of urea in the process of thermal treatment were reduced, resulting in the product yield of g-C3N4 from 0.3 to 0.4 g/10 g urea remarkably increasing to 1.2 g/10 g urea. Moreover, superior photocatalytic activities were observed for degrading methyl orange (MO) and H2 generation from water splitting over the mg-C3N4 photocatalyst. The facilely developed method for high-yield mesoporous g-C3N4 from cost-effective urea was more attractive for its wide applications in environmental treatment and energy development fields.
源语言 | 英语 |
---|---|
页(从-至) | 3412-3419 |
页数 | 8 |
期刊 | ACS Sustainable Chemistry and Engineering |
卷 | 3 |
期 | 12 |
DOI | |
出版状态 | 已出版 - 5 11月 2015 |
已对外发布 | 是 |