TY - JOUR
T1 - High-Resolution Remote Sensing Bitemporal Image Change Detection Based on Feature Interaction and Multitask Learning
AU - Zhao, Chunhui
AU - Tang, Yingjie
AU - Feng, Shou
AU - Fan, Yuanze
AU - Li, Wei
AU - Tao, Ran
AU - Zhang, Lifu
N1 - Publisher Copyright:
© 1980-2012 IEEE.
PY - 2023
Y1 - 2023
N2 - With the development of remote sensing technology, high-resolution (HR) remote sensing optical images have gradually become the main source of change detection data. Albeit, the change detection for HR remote sensing images still faces challenges: 1) in complex scenes, a region contains a large amount of semantic information, which makes it difficult to accurately locate the boundaries between different semantics in the feature maps and 2) due to the inability to maintain consistent conditions such as light, weather, and other factors when acquiring bitemporal images, confounding factors such as the style of bitemporal data that are not related to change detection can cause detection difficulties. Therefore, a change detection method based on feature interaction and multitask learning (FMCD) is proposed in this article. To improve the ability to detect changes in complex scenes, FMCD models the context information of features through a multilevel feature interaction module, so as to obtain representative features, and to improve the sensitivity of the model to changes, the interaction between two temporal features is realized through the mix attention block (MAB). In addition, to eliminate the influence of weather and other factors, FMCD adopts a multitask learning strategy, takes domain adaptation as an auxiliary task, and maps the features of bitemporal images to the same space through the feature relationship adaptation module (FRAM) and feature distribution adaptation module (FDAM). Experiments on three datasets show that the proposed method is superior to other state-of-the-art methods.
AB - With the development of remote sensing technology, high-resolution (HR) remote sensing optical images have gradually become the main source of change detection data. Albeit, the change detection for HR remote sensing images still faces challenges: 1) in complex scenes, a region contains a large amount of semantic information, which makes it difficult to accurately locate the boundaries between different semantics in the feature maps and 2) due to the inability to maintain consistent conditions such as light, weather, and other factors when acquiring bitemporal images, confounding factors such as the style of bitemporal data that are not related to change detection can cause detection difficulties. Therefore, a change detection method based on feature interaction and multitask learning (FMCD) is proposed in this article. To improve the ability to detect changes in complex scenes, FMCD models the context information of features through a multilevel feature interaction module, so as to obtain representative features, and to improve the sensitivity of the model to changes, the interaction between two temporal features is realized through the mix attention block (MAB). In addition, to eliminate the influence of weather and other factors, FMCD adopts a multitask learning strategy, takes domain adaptation as an auxiliary task, and maps the features of bitemporal images to the same space through the feature relationship adaptation module (FRAM) and feature distribution adaptation module (FDAM). Experiments on three datasets show that the proposed method is superior to other state-of-the-art methods.
KW - Change detection
KW - domain adaptation
KW - feature interaction
KW - high-resolution (HR) remote sensing image
KW - multitask learning
UR - http://www.scopus.com/inward/record.url?scp=85159810402&partnerID=8YFLogxK
U2 - 10.1109/TGRS.2023.3275140
DO - 10.1109/TGRS.2023.3275140
M3 - Article
AN - SCOPUS:85159810402
SN - 0196-2892
VL - 61
JO - IEEE Transactions on Geoscience and Remote Sensing
JF - IEEE Transactions on Geoscience and Remote Sensing
M1 - 5511514
ER -