TY - JOUR
T1 - High-resolution photonic-assisted microwave frequency identification based on an ultrahigh-Q hybrid optical filter
AU - Zhang, Weifeng
AU - Liu, Haoyan
AU - Cheng, Yihao
AU - Hong, Xu
AU - Wang, Bin
N1 - Publisher Copyright:
© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.
PY - 2023/12/4
Y1 - 2023/12/4
N2 - Photonic-assisted microwave frequency identification has been extensively studied in civil and defense applications due to its distinct features including wide frequency coverage, large instantaneous bandwidth, high frequency resolution, and immunity to electromagnetic interference. In this paper, we propose and experimentally demonstrate an approach for high-resolution frequency identification of wideband microwave signals by linearly mapping the microwave frequencies to the time delays of the optical pulses. In the proposed system, an ultrahigh-Q hybrid optical filter is a key component, which consists of a fiber ring resonator (FRR) and a silicon photonic racetrack micro-ring resonator (MRR). The FRR has an ultra-narrow bandwidth of 7.6 MHz and a small free spectral range (FSR) of 292.5 MHz, while the MRR has a bandwidth of 167.5 MHz and a large FSR of 73.8 GHz. By precisely matching the resonance wavelengths of the FRR and the MRR, a hybrid optical filter with an ultrahigh Q-factor and a large FSR is realized, which is much preferred to realizing a high resolution and a wide measurement range for microwave frequency identification. An experiment is performed and different types of microwave signals are identified. A frequency measurement range as broad as 33 GHz from 2 to 35 GHz, a frequency resolution as high as 15 MHz and a measurement accuracy as high as 5.6 MHz are experimentally demonstrated. The proposed frequency identification system holds great advantages including high frequency resolution, high measurement accuracy, and wide frequency coverage, which can find extensive applications in next-generation electronic warfare and cognitive radio systems.
AB - Photonic-assisted microwave frequency identification has been extensively studied in civil and defense applications due to its distinct features including wide frequency coverage, large instantaneous bandwidth, high frequency resolution, and immunity to electromagnetic interference. In this paper, we propose and experimentally demonstrate an approach for high-resolution frequency identification of wideband microwave signals by linearly mapping the microwave frequencies to the time delays of the optical pulses. In the proposed system, an ultrahigh-Q hybrid optical filter is a key component, which consists of a fiber ring resonator (FRR) and a silicon photonic racetrack micro-ring resonator (MRR). The FRR has an ultra-narrow bandwidth of 7.6 MHz and a small free spectral range (FSR) of 292.5 MHz, while the MRR has a bandwidth of 167.5 MHz and a large FSR of 73.8 GHz. By precisely matching the resonance wavelengths of the FRR and the MRR, a hybrid optical filter with an ultrahigh Q-factor and a large FSR is realized, which is much preferred to realizing a high resolution and a wide measurement range for microwave frequency identification. An experiment is performed and different types of microwave signals are identified. A frequency measurement range as broad as 33 GHz from 2 to 35 GHz, a frequency resolution as high as 15 MHz and a measurement accuracy as high as 5.6 MHz are experimentally demonstrated. The proposed frequency identification system holds great advantages including high frequency resolution, high measurement accuracy, and wide frequency coverage, which can find extensive applications in next-generation electronic warfare and cognitive radio systems.
UR - http://www.scopus.com/inward/record.url?scp=85178998227&partnerID=8YFLogxK
U2 - 10.1364/OE.509925
DO - 10.1364/OE.509925
M3 - Article
C2 - 38087634
AN - SCOPUS:85178998227
SN - 1094-4087
VL - 31
SP - 42651
EP - 42666
JO - Optics Express
JF - Optics Express
IS - 25
ER -