High-precision indoor visible light positioning using modified momentum back propagation neural network with sparse training point

Haiqi Zhang, Jiahe Cui, Lihui Feng*, Aiying Yang, Huichao Lv, Bo Lin, Heqing Huang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

23 引用 (Scopus)

摘要

In this letter, we propose an indoor visible light positioning technique using a Modified Momentum Back-Propagation (MMBP) algorithm based on received signal strength (RSS) with sparse training data set. Unlike other neural network algorithms that require a large number of training data points to locate accurately, we have realized high-precision positioning for 100 test points with only 20 training points in a 1.8 m X 1.8 m X 2.1 m localization area. In order to verify the adaptability of the MMBP algorithm, we experimentally demonstrate two different training data acquisition methods adopting either even or arbitrary training sets. In addition, we also demonstrate the positioning accuracy of the traditional RSS algorithm. Experimental results show that the average localization accuracy optimized by our proposed algorithm is only 1.88 cm for the arbitrary set and 1.99 cm for the even set, while the average positioning error of the traditional RSS algorithm reaches 14.34 cm. Comparison indicates that the positioning accuracy of our proposed algorithm is 7.6 times higher. Results also show that the performance of our system is higher than some previous reports based on RSS and RSS fingerprint databases using complex machine learning algorithms trained by a large amount of training points.

源语言英语
文章编号2324
期刊Sensors
19
10
DOI
出版状态已出版 - 2 5月 2019

指纹

探究 'High-precision indoor visible light positioning using modified momentum back propagation neural network with sparse training point' 的科研主题。它们共同构成独一无二的指纹。

引用此