Graph Game Embedding

Xiaobin Hong, Tong Zhang, Zhen Cui*, Yuge Huang, Pengcheng Shen, Shaoxin Li, Jian Yang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

6 引用 (Scopus)

摘要

Graph embedding aims to encode nodes/edges into low-dimensional continuous features, and has become a crucial tool for graph analysis including graph/node classification, link prediction, etc. In this paper we propose a novel graph learning framework, named graph game embedding, to learn discriminative node representation as well as encode graph structures. Inspired by the spirit of game learning, node embedding is converted to the selection/searching process of player strategies, where each node corresponds to one player and each edge corresponds to the interaction of two players. Then, a utility function, which theoretically satisfies the Nash Equilibrium, is defined to measure the benefit/loss of players during graph evolution. Furthermore, a collaboration and competition mechanism is introduced to increase the discriminant learning ability. Under this graph game embedding framework, considering different interaction manners of nodes, we propose two specific models, named paired game embedding for paired nodes and group game embedding for group interaction. Comparing with existing graph embedding methods, our algorithm possesses two advantages: (1) the designed utility function ensures the stable graph evolution with theoretical convergence and Nash Equilibrium satisfaction; (2) the introduced collaboration and competition mechanism endows the graph game embedding framework with discriminative feature leaning ability by guiding each node to learn an optimal strategy distinguished from others. We test the proposed method on three public datasets about citation networks, and the experimental results verify the effectiveness of our method.

源语言英语
主期刊名35th AAAI Conference on Artificial Intelligence, AAAI 2021
出版商Association for the Advancement of Artificial Intelligence
7711-7720
页数10
ISBN(电子版)9781713835974
出版状态已出版 - 2021
已对外发布
活动35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
期限: 2 2月 20219 2月 2021

出版系列

姓名35th AAAI Conference on Artificial Intelligence, AAAI 2021
9A

会议

会议35th AAAI Conference on Artificial Intelligence, AAAI 2021
Virtual, Online
时期2/02/219/02/21

指纹

探究 'Graph Game Embedding' 的科研主题。它们共同构成独一无二的指纹。

引用此