Graph Deformer Network

Wenting Zhao, Yuan Fang, Zhen Cui*, Tong Zhang, Jian Yang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Convolution learning on graphs draws increasing attention recently due to its potential applications to a large amount of irregular data. Most graph convolution methods leverage the plain summation/average aggregation to avoid the discrepancy of responses from isomorphic graphs. However, such an extreme collapsing way would result in a structural loss and signal entanglement of nodes, which further cause the degradation of the learning ability. In this paper, we propose a simple yet effective Graph Deformer Network (GDN) to fulfill anisotropic convolution filtering on graphs, analogous to the standard convolution operation on images. Local neighborhood subgraphs (acting like receptive fields) with different structures are deformed into a unified virtual space, coordinated by several anchor nodes. In the deformation process, we transfer components of nodes therein into affinitive anchors by learning their correlations, and build a multi-granularity feature space calibrated with anchors. Anisotropic convolutional kernels can be further performed over the anchor-coordinated space to well encode local variations of receptive fields. By parameterizing anchors and stacking coarsening layers, we build a graph deformer network in an end-to-end fashion. Theoretical analysis indicates its connection to previous work and shows the promising property of graph isomorphism testing. Extensive experiments on widely-used datasets validate the effectiveness of GDN in graph and node classifications.

源语言英语
主期刊名Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI 2021
编辑Zhi-Hua Zhou
出版商International Joint Conferences on Artificial Intelligence
1646-1652
页数7
ISBN(电子版)9780999241196
出版状态已出版 - 2021
已对外发布
活动30th International Joint Conference on Artificial Intelligence, IJCAI 2021 - Virtual, Online, 加拿大
期限: 19 8月 202127 8月 2021

出版系列

姓名IJCAI International Joint Conference on Artificial Intelligence
ISSN(印刷版)1045-0823

会议

会议30th International Joint Conference on Artificial Intelligence, IJCAI 2021
国家/地区加拿大
Virtual, Online
时期19/08/2127/08/21

指纹

探究 'Graph Deformer Network' 的科研主题。它们共同构成独一无二的指纹。

引用此