Graph based optic nerve head segmentation

Qing Nie*, Leyuan Fang, Huiqi Li, Fei Gao

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

In this paper, we propose a fast and accurate method to locate and segment ONH boundary. This method integrates both the gradient and the local intensity cues to locate the ONH. It formulates the ONH segmentation problem into tracing an optimal path under graph theory framework. The optimal graph search technic considers both local and global information and makes our algorithm work well under poor ONH border contrast. Experiments over two public datasets show that the proposed method can accurate segment ONH boundary under blurred border or different pathological lesions. The average automatic ONH segmentation accuracies are 88.7% for MESSIDOR dataset and 88.6% for ARIA dataset. It can reach 90.2% for MESSIDOR dataset and 91.0% for ARIA dataset if use manual determined center.

源语言英语
主期刊名Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, ICIEA 2014
出版商Institute of Electrical and Electronics Engineers Inc.
1010-1015
页数6
ISBN(电子版)9781479943166
DOI
出版状态已出版 - 20 10月 2014
活动9th IEEE Conference on Industrial Electronics and Applications, ICIEA 2014 - Hangzhou, 中国
期限: 9 6月 201411 6月 2014

出版系列

姓名Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, ICIEA 2014

会议

会议9th IEEE Conference on Industrial Electronics and Applications, ICIEA 2014
国家/地区中国
Hangzhou
时期9/06/1411/06/14

指纹

探究 'Graph based optic nerve head segmentation' 的科研主题。它们共同构成独一无二的指纹。

引用此