Glucono-δ-lactone controlled assembly of graphene oxide hydrogels with selectively reversible gel-sol transition

Huan Huang, Shaoyi Lü, Xuetong Zhang*, Ziqiang Shao

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

84 引用 (Scopus)

摘要

A generic approach to make the uniform graphene oxide (GO) hydrogels by using glucono-δ-lactone (GDL) as a hydrogel promoter has been put forward for the first time. Either in situ released multivalent metal ions (e.g. La 3+, Co 2+, Ni 2+) or in situ protonized polyamine (e.g. polyethylenimine, melamine, polyamidoamine) molecules have assembled GO sheets into 3D hydrogel architectures with the assistance of the hydrolysis product of GDL. The permanent network and mechanical property of the resulting GO hydrogels have been studied by rheology investigation. The chemical composition and porous morphology of the resulting GO hydrogels have been revealed by X-ray photoelectron spectroscopy and scanning electron microscopy, respectively. The microstructure of the resulting GO hydrogels has been investigated by Raman spectroscopy and X-ray diffraction. More interestingly, a reversible gel-sol transition initially triggered with the addition of the EDTA solution, depending on which additive (in situ released multivalent metal ions or in situ protonized polyamine molecules) is used for 3D assembly of the GO sheets, has been observed from the resulting GO hydrogels.

源语言英语
页(从-至)4609-4615
页数7
期刊Soft Matter
8
17
DOI
出版状态已出版 - 7 5月 2012

指纹

探究 'Glucono-δ-lactone controlled assembly of graphene oxide hydrogels with selectively reversible gel-sol transition' 的科研主题。它们共同构成独一无二的指纹。

引用此