Gloss-based word domain assignment

Chaoyong Zhu, Shumin Shi*, Haijun Zhang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

Domain dictionary is very useful in many Natural Language Processing (NLP) applications. This paper proposes a gloss-based word domain assignment algorithm to build domain dictionaries from machine-readable dictionary. Experiments on WordNet2.0 show that 62.53% of the first domain labels can match with the WordNet Domains3.0. Compared with the traditional corpus-based word domain assignment algorithms, this method can effectively use the existing dictionary resource and improve the accuracy of word domain assignment while reducing human efforts on corpus collection.

源语言英语
主期刊名NLP-KE 2011 - Proceedings of the 7th International Conference on Natural Language Processing and Knowledge Engineering
150-155
页数6
DOI
出版状态已出版 - 2011
活动7th International Conference on Natural Language Processing and Knowledge Engineering, NLP-KE 2011 - Tokushima, 日本
期限: 27 11月 201129 11月 2011

出版系列

姓名NLP-KE 2011 - Proceedings of the 7th International Conference on Natural Language Processing and Knowledge Engineering

会议

会议7th International Conference on Natural Language Processing and Knowledge Engineering, NLP-KE 2011
国家/地区日本
Tokushima
时期27/11/1129/11/11

指纹

探究 'Gloss-based word domain assignment' 的科研主题。它们共同构成独一无二的指纹。

引用此