摘要
Taking the effect of spatial diffusion into account, we introduce an exponential ordering and give sufficient conditions under which reaction-diffusion systems with delays generate monotone semi-flows on a suitable phase space even if they are not quasi-monotone. The powerful theory of monotone semi-flows is applied to describe the threshold dynamics for a nonlocal delayed reaction-diffusion system modelling the spread of bacterial infections.
源语言 | 英语 |
---|---|
页(从-至) | 1027-1033 |
页数 | 7 |
期刊 | Applied Mathematics Letters |
卷 | 18 |
期 | 9 |
DOI | |
出版状态 | 已出版 - 9月 2005 |
指纹
探究 'Global dynamics of reaction-diffusion systems with delays' 的科研主题。它们共同构成独一无二的指纹。引用此
Wang, Y., & Wang, Y. (2005). Global dynamics of reaction-diffusion systems with delays. Applied Mathematics Letters, 18(9), 1027-1033. https://doi.org/10.1016/j.aml.2004.08.017