Fundamental solutions of nonlocal Hörmander's operators II

Xicheng Zhang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

8 引用 (Scopus)

摘要

Consider the following nonlocal integro-differential operator: for α ∈ (0, 2): where σ: Rd →Rd ⊗ Rd and b: Rd → Rd are smooth functions and have bounded partial derivatives of all orders greater than 1, δ is a small positive number, p.v. stands for the Cauchy principal value and L is a bounded linear operator in Sobolev spaces. Let B1(x) := σ(x) and Bj+1(x) := b(x) · ∇Bj (x)-∇b(x) · Bj (x) for j ∈ N. Suppose Bj ∈ C b (Rd Rd ⊗ Rd ) for each j ∈ N. Under the following uniform Hörmander's type condition: for some j0 ∈ N, by using Bismut's approach to the Malliavin calculus with jumps, we prove the existence of fundamental solutions to operator L(α)σ,b. In particular, we answer a question proposed by Nualart [Sankhyā A 73 (2011) 46-49] and Varadhan [Sankhyā A 73 (2011) 50-51].

源语言英语
页(从-至)1799-1841
页数43
期刊Annals of Probability
45
3
DOI
出版状态已出版 - 1 5月 2017
已对外发布

指纹

探究 'Fundamental solutions of nonlocal Hörmander's operators II' 的科研主题。它们共同构成独一无二的指纹。

引用此