FPGA-based accelerator for convolution operations

Yunfei Cao, Xin Wei, Tingting Qiao, He Chen

科研成果: 书/报告/会议事项章节会议稿件同行评审

6 引用 (Scopus)

摘要

Convolutional neural networks have been widely used in many deep learning applications. Convolutional neural networks have a large number of convolution operations, which poses a huge challenge to real-time performance. In recent years, FPGA implementations of convolutional accelerators have received much attention due to their high performance and energy efficiency. In this paper, we implement an accelerator for convolution operations through the systolic array architecture on Xilinx ZedBoard device. The experimental results show that ours designed accelerators achieving performance density of up to 0.032 Gop/s/DSP.

源语言英语
主期刊名ICSIDP 2019 - IEEE International Conference on Signal, Information and Data Processing 2019
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9781728123455
DOI
出版状态已出版 - 12月 2019
活动2019 IEEE International Conference on Signal, Information and Data Processing, ICSIDP 2019 - Chongqing, 中国
期限: 11 12月 201913 12月 2019

出版系列

姓名ICSIDP 2019 - IEEE International Conference on Signal, Information and Data Processing 2019

会议

会议2019 IEEE International Conference on Signal, Information and Data Processing, ICSIDP 2019
国家/地区中国
Chongqing
时期11/12/1913/12/19

指纹

探究 'FPGA-based accelerator for convolution operations' 的科研主题。它们共同构成独一无二的指纹。

引用此