Featuring heterogeneous composite of W-type hexagonal ferrite with 2D vanadium carbide MXene for wideband microwave absorption

M. Mudasar, Z. H. Xu, S. Y. Lian, Xiang Li*, J. Wang, Xingwang Cheng*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

7 引用 (Scopus)

摘要

In this study, W-type hexagonal ferrite BaCo1.2Zn0.8Fe16O27 (BCZF) was synthesized via solid-state sintering and V2CTx-MXene was chemically etched from its V2AlC MAX phase. Subsequently, BCZF and V2CTx composites were synthesized by hydrothermal integration of V2CTx on the surface of BCZF bonded by electrostatic forces at varying mass ratios. The extensive heterostructure interfacial morphology of two dimensional V2CTx and BCZF plays an explicit role in tuning the dielectric and magnetic loss characteristics of the synthesized composites. The dielectric-magnetic synergistic loss mechanism caused by interfacial polarization, strong multi-reflections, scattering between MXene multilayer structures, conduction loss, and magnetic resonance effectively optimized impedance matching to improve the attenuation ability of the synthesized composites. Remarkably, the BCZF@10%V2CTx composite achieved strong electromagnetic wave absorption ability with an effective absorption bandwidth (RL < −10 dB) of 8.0 GHz (10–18 GHz) which is superior to that of contemporary magnetic–dielectric hybrid composites. These results present a novel perspective on magnetic V2CTx-MXene composites for microwave absorption applications, and provide a basis for the design and development of high-performance cloaking materials.

源语言英语
页(从-至)2699-2713
页数15
期刊Journal of Materials Research and Technology
28
DOI
出版状态已出版 - 1 1月 2024

指纹

探究 'Featuring heterogeneous composite of W-type hexagonal ferrite with 2D vanadium carbide MXene for wideband microwave absorption' 的科研主题。它们共同构成独一无二的指纹。

引用此