Fast bundle adjustment using adaptive moment estimation

Tiexin Liu, Liheng Bian*, Xianbin Cao, Jun Zhang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Bundle adjustment (BA) is an important task for feature matching in multiple applications such as image stitching and position mapping. It aims to reconstruct the 8-parameter homography matrix, which is used for perspective transformation among different images. The existing algorithms such as the Levenberg-Marquardt (LM) algorithm and the Gauss{Newton (GN) algorithm require much computation and a large number of iterations. To accelerate reconstruction speed, here we propose a novel BA algorithm based on adaptive moment estimation (Adam). The Adam solver uses the mean and uncentered variance of the gradients in the previous iterations to dynamically adjust the gradient direction of the current iteration, which improves reconstruction quality and increases convergence speed. Besides, it requires only the first derivate calculation, and thus obtains low computational complexity. Both simulations and experiments validate that the proposed method converges faster than the conventional BA methods.

源语言英语
主期刊名Optoelectronic Imaging and Multimedia Technology VI
编辑Qionghai Dai, Tsutomu Shimura, Zhenrong Zheng
出版商SPIE
ISBN(电子版)9781510630918
DOI
出版状态已出版 - 2019
活动Optoelectronic Imaging and Multimedia Technology VI 2019 - Hangzhou, 中国
期限: 21 10月 201923 10月 2019

出版系列

姓名Proceedings of SPIE - The International Society for Optical Engineering
11187
ISSN(印刷版)0277-786X
ISSN(电子版)1996-756X

会议

会议Optoelectronic Imaging and Multimedia Technology VI 2019
国家/地区中国
Hangzhou
时期21/10/1923/10/19

指纹

探究 'Fast bundle adjustment using adaptive moment estimation' 的科研主题。它们共同构成独一无二的指纹。

引用此