TY - GEN
T1 - Exploiting Spectral-Spatial Correlation for Coded Hyperspectral Image Restoration
AU - Fu, Ying
AU - Zheng, Yinqiang
AU - Sato, Imari
AU - Sato, Yoichi
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/12/9
Y1 - 2016/12/9
N2 - Conventional scanning and multiplexing techniques for hyperspectral imaging suffer from limited temporal and/or spatial resolution. To resolve this issue, coding techniques are becoming increasingly popular in developing snapshot systems for high-resolution hyperspectral imaging. For such systems, it is a critical task to accurately restore the 3D hyperspectral image from its corresponding coded 2D image. In this paper, we propose an effective method for coded hyperspectral image restoration, which exploits extensive structure sparsity in the hyperspectral image. Specifically, we simultaneously explore spectral and spatial correlation via low-rank regularizations, and formulate the restoration problem into a variational optimization model, which can be solved via an iterative numerical algorithm. Experimental results using both synthetic data and real images show that the proposed method can significantly outperform the state-of-the-art methods on several popular coding-based hyperspectral imaging systems.
AB - Conventional scanning and multiplexing techniques for hyperspectral imaging suffer from limited temporal and/or spatial resolution. To resolve this issue, coding techniques are becoming increasingly popular in developing snapshot systems for high-resolution hyperspectral imaging. For such systems, it is a critical task to accurately restore the 3D hyperspectral image from its corresponding coded 2D image. In this paper, we propose an effective method for coded hyperspectral image restoration, which exploits extensive structure sparsity in the hyperspectral image. Specifically, we simultaneously explore spectral and spatial correlation via low-rank regularizations, and formulate the restoration problem into a variational optimization model, which can be solved via an iterative numerical algorithm. Experimental results using both synthetic data and real images show that the proposed method can significantly outperform the state-of-the-art methods on several popular coding-based hyperspectral imaging systems.
UR - http://www.scopus.com/inward/record.url?scp=84986277920&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2016.405
DO - 10.1109/CVPR.2016.405
M3 - Conference contribution
AN - SCOPUS:84986277920
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
SP - 3727
EP - 3736
BT - Proceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
PB - IEEE Computer Society
T2 - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
Y2 - 26 June 2016 through 1 July 2016
ER -