Experimental and numerical study of combustion and emissions performance in a hydrogen-enriched Wankel engine at stoichiometric and lean operations

Cheng Shi, Changwei Ji*, Shuofeng Wang, Jinxin Yang, Huaiyu Wang

*此作品的通讯作者

    科研成果: 期刊稿件文章同行评审

    36 引用 (Scopus)

    摘要

    Based on a retrofitted Wankel engine, fundamental experiments and numerical simulations were conducted to investigate the role of the hydrogen addition under stoichiometric and lean combustion conditions. The test-bench recording of in-cylinder pressure, heat release, cycle-to-cycle fluctuation, and exhaust emissions were used to characterize fuel combustion. The verified CFD model clarified the inherent mechanisms behind experimental data. Results showed that the introduction of hydrogen addition caused combustion temperature to increase, the timing taken for active radical formations was significantly advanced, and the peak concentrations increased. This contributed to the increased pressure and the shortened combustion phasing in experiments. There was a proportional correspondence of the early flame growth and cyclic variation. Hydrogen addition has a minimal effect on the turbulent intensity after spark timing. However, adopting a highly diluted mixture caused the enhanced turbulent intensity, which was responsible for improving the stability of the engine. Due to the synergistic effects of the work delivery, cyclic fluctuation, and exhaust temperature, a larger hydrogen addition with stoichiometric operation showed lower higher brake thermal efficiency. Nitrogen oxide emissions increased with hydrogen enrichment and reduced with a higher degree of mixture dilution owing to a close positive correlation between the mass elevated-temperature and NOx formation. Benefits from sufficient oxygen concentration and elevated combustion temperature, the chain transfer process can be accelerated. This explained why CO emissions decreased at a larger hydrogen-enriched and leaner condition in the experimental investigation. Increasing the hydrogen content provided improvement in the desired HC emissions for all operating points.

    源语言英语
    文章编号120181
    期刊Fuel
    291
    DOI
    出版状态已出版 - 1 5月 2021

    指纹

    探究 'Experimental and numerical study of combustion and emissions performance in a hydrogen-enriched Wankel engine at stoichiometric and lean operations' 的科研主题。它们共同构成独一无二的指纹。

    引用此