Estimation of fiber orientations using neighborhood information

Chuyang Ye*, Jiachen Zhuo, Rao P. Gullapalli, Jerry L. Prince

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Diffusion magnetic resonance imaging (dMRI) has been used to noninvasively reconstruct fiber tracts. Fiber orientation (FO) estimation is a crucial step in the reconstruction, especially in the case of crossing fibers. In FO estimation, it is important to incorporate spatial coherence of FOs to reduce the effect of noise. In this work, we propose a method of FO estimation using neighborhood information. The diffusion signal is modeled by a fixed tensor basis. The spatial coherence is enforced in weighted ℓ1-norm regularization terms, which contain the interaction of directional information between neighbor voxels. Data fidelity is ensured by the agreement between raw and reconstructed diffusion signals. The resulting objective function is solved using a block coordinate descent algorithm. Experiments were performed on a digital crossing phantom, ex vivo tongue dMRI data, and in vivo brain dMRI data for qualitative and quantitative evaluation. The results demonstrate that the proposed method improves the quality of FO estimation.

源语言英语
主期刊名Computational Diffusion MRI - MICCAI Workshop, 2015
编辑Yogesh Rathi, Andrea Fuster, Aurobrata Ghosh, Enrico Kaden, Marco Reisert
出版商Springer Heidelberg
87-96
页数10
ISBN(印刷版)9783319285863
DOI
出版状态已出版 - 2016
已对外发布
活动Workshop on Computational Diffusion MRI, MICCAI 2015 - Munich, 德国
期限: 9 10月 20159 10月 2015

出版系列

姓名Mathematics and Visualization
none
ISSN(印刷版)1612-3786
ISSN(电子版)2197-666X

会议

会议Workshop on Computational Diffusion MRI, MICCAI 2015
国家/地区德国
Munich
时期9/10/159/10/15

指纹

探究 'Estimation of fiber orientations using neighborhood information' 的科研主题。它们共同构成独一无二的指纹。

引用此