Enhanced Thermal Decomposition and Safety of Spherical CL-20@MOF-199 Composites via Micro-Nanostructured Self-Assembly Regulation

Haojie Li, Wenchao Tong, Zhenzhan Yan, Long Li, Shuang Wang, Junda Huo, Li Yang*, Jimin Han*, Xiaoting Ren*, Wei Li

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

8 引用 (Scopus)

摘要

The characteristics of high burning rate, high energy output, and low pressure exponent have always been the focus of development in the field of composite solid rocket propellants. In this paper, a metal-organic framework (MOF-199) compound is introduced to prepare micro-nanospherical CL-20@MOF-199 composites via the spray-drying self-assembly technique to reach the above goals. MOF-199, which acts as an attractive combustion catalyst and a safety regulator, is uniformly coated on the surface of CL-20 with close interface contact between particles, effectively accelerating the thermal decomposition of CL-20 and ensuring safety performance. The average noncovalent interaction (aNCI) analysis illustrates that there are strong C-H···O hydrogen bonds and van der Waals interaction between CL-20 and MOF-199 molecules, greatly enhancing the effect of interparticle assembly. The effects of different contents of MOF-199 on the thermal, safety, and energy properties of CL-20 were discussed. The thermal analysis demonstrates that MOF-199 has a significant thermal catalytic effect on CL-20, with an advanced peak temperature of thermal decomposition of 14.2 °C and a reduced activation energy barrier of 34.2 kJ·mol-1, mainly benefitting from more exposed catalytic active sites and close interface contact. In addition, CL-20@MOF-199 composites exhibit decreased mechanical sensitivity (IS: 21-40 cm, FS: 80-240 N) and excellent energy performance. This work clearly demonstrates that MOF-199 is both a superior combustion catalyst and a good safety buffer for CL-20, and it opens new potential for further applications of CL-20 in composite solid propellants.

源语言英语
页(从-至)41850-41860
页数11
期刊ACS applied materials & interfaces
15
35
DOI
出版状态已出版 - 6 9月 2023

指纹

探究 'Enhanced Thermal Decomposition and Safety of Spherical CL-20@MOF-199 Composites via Micro-Nanostructured Self-Assembly Regulation' 的科研主题。它们共同构成独一无二的指纹。

引用此