Energy-Efficient Ground-Air-Space Vehicular Crowdsensing by Hierarchical Multi-Agent Deep Reinforcement Learning with Diffusion Models

Yinuo Zhao, Chi Harold Liu*, Tianjiao Yi, Guozheng Li, Dapeng Wu

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

The integrated ground-air-space (GAS) communications system can enhance post-disaster rescue and management efforts when traditional networks fail, by navigating unmanned ground vehicles (UGVs) and unmanned arieal vehicles (UAVs) to collaboratively collect sufficient data from point-of-interests (PoIs) in a timely manner. In this paper, we consider the GAS vehicular crowdsensing (VCS) campaign, where UGVs dispatch and callback UAVs periodically across multiple stops in the workzone, to maximize the total collected amount of data, geographic fairness while minimizing the energy consumption simultaneously. Specifically, we propose an energy-efficient, go-directed hierarchical multi-agent deep reinforcement learning (MADRL) method with discrete diffusion models called 'gMADRL-VCS', to optimize the high-level goal-conditioned navigation policies of UGVs, and the low-level long-term sensing strategies of UAVs. Extensive experimental results on two real-world datasets in Roma, Italy, and Hong Kong SAR, China show that gMADRL-VCS outperforms baselines in terms of energy efficiency, data collection ratio, energy consumption, and UAV-UGV cooperation factor.

源语言英语
期刊IEEE Journal on Selected Areas in Communications
DOI
出版状态已接受/待刊 - 2024

指纹

探究 'Energy-Efficient Ground-Air-Space Vehicular Crowdsensing by Hierarchical Multi-Agent Deep Reinforcement Learning with Diffusion Models' 的科研主题。它们共同构成独一无二的指纹。

引用此