Effect of ion-specific water structures at metal surfaces on hydrogen production

Ye Tian*, Botao Huang, Yizhi Song, Yirui Zhang, Dong Guan, Jiani Hong, Duanyun Cao, Enge Wang, Limei Xu*, Yang Shao-Horn*, Ying Jiang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

Water structures at electrolyte/electrode interfaces play a crucial role in determining the selectivity and kinetics of electrochemical reactions. Despite extensive experimental and theoretical efforts, atomic-level details of ion-specific water structures on metal surfaces remain unclear. Here we show, using scanning tunneling microscopy and noncontact atomic force microscopy, that we can visualize water layers containing alkali metal cations on a charged Au(111) surface with atomic resolution. Our results reveal that Li+ cations are elevated from the surface, facilitating the formation of an ice-like water layer between the Li+ cations and the surface. In contrast, K+ and Cs+ cations are in direct contact with the surface. We observe that the water network structure transitions from a hexagonal arrangement with Li+ to a distorted hydrogen-bonding configuration with Cs+. These observations are consistent with surface-enhanced infrared absorption spectroscopy data and suggest that alkali metal cations significantly impact hydrogen evolution reaction kinetics and efficiency. Our findings provide insights into ion-specific water structures on metal surfaces and underscore the critical role of spectator ions in electrochemical processes.

源语言英语
文章编号7834
期刊Nature Communications
15
1
DOI
出版状态已出版 - 12月 2024
已对外发布

指纹

探究 'Effect of ion-specific water structures at metal surfaces on hydrogen production' 的科研主题。它们共同构成独一无二的指纹。

引用此