Effect of Fluoroalcohol Chain Extension Modified HTPB Binder on the Combustion Performance of Aluminized Propellants

Yanjie Huang, Kanghua Chang, Jie Yao, Xueyong Guo, Chen Shen*, Shi Yan*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

To enhance both the mechanical properties of hydroxyl-terminated polybutadiene (HTPB) binder and the combustion efficiency of aluminized propellants, 2,2,3,3,4,4,5,5-octafluoro-1,6-hexanediol (OFHD) was employed as a chain extender to impart mechanical regulation to the HTPB binder. Mechanical testing showed that the mechanical properties of fluoride-modified HTPB polyurethane (FPU) were significantly improved: the peak tensile strength of the optimized samples reached 1.99 MPa, and the elongation at break attained 486%. The structural characterization of the FPUs was conducted using Fourier transform infrared (FTIR) spectroscopy. Thermogravimetry-mass spectrometer (TG-MS) analysis revealed that the initial thermal decomposition temperature of the FPU shifted from 170 °C to 162 °C, accompanied by the release of fluorine-containing fragments during decomposition. Analysis of the combustion residue indicated that the addition of OFHD can reduce the agglomeration of aluminum (Al) powder in aluminized propellants. Dynamic pressure characteristics results showed an augmented pressurization rate under argon and oxygen atmospheres, increased by 18.67% and 37.29%, respectively. Heat release tests indicated that the aluminized propellants with the addition of OFHD had a higher combustion heat, being increased by 6.57%. The binder system is expected to be applied in aluminized propellants to improve the mechanical properties and combustion efficiency of Al powder.

源语言英语
文章编号258
期刊Crystals
14
3
DOI
出版状态已出版 - 3月 2024

指纹

探究 'Effect of Fluoroalcohol Chain Extension Modified HTPB Binder on the Combustion Performance of Aluminized Propellants' 的科研主题。它们共同构成独一无二的指纹。

引用此