摘要
Variable driving conditions can cause an integrated starter generator hybrid powertrain to switch between multiple drive modes. The addition of a permanent magnet synchronous motor (PMSM) gives hybrid powertrains complex electromechanical coupling characteristics. The effects of excitation sources, such as the engine and PMSM, may cause unstable behavior in the drive system, such as speed fluctuations during mode switches due to electromechanical coupling characteristics. Although traditional mode switch strategies and methods have achieved measurable results, they are difficult to improve. To solve this problem, we first considered the combination and separation of the clutch and establish a nonlinear model of mode switches for series–parallel hybrid electric vehicles. Then, we predicted the instability boundary of the drive system during mode switches. Experimental results indicated that the proposed instability boundary has higher accuracy. Numerical results showed that the three-mode switches have different thresholds of instability for the clutch structure gap. The decrease in electromagnetic torque and the increase in load excitation amplitude will improve the critical value of the clutch structure gap. The increase in load excitation frequency causes the critical value of the clutch structure gap to drop first and then rise.
源语言 | 英语 |
---|---|
页(从-至) | 45-59 |
页数 | 15 |
期刊 | Nonlinear Dynamics |
卷 | 105 |
期 | 1 |
DOI | |
出版状态 | 已出版 - 7月 2021 |