Dual-Layered Film Protected Lithium Metal Anode to Enable Dendrite-Free Lithium Deposition

Chong Yan, Xin Bing Cheng, Yang Tian, Xiang Chen, Xue Qiang Zhang, Wen Jun Li, Jia Qi Huang*, Qiang Zhang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

459 引用 (Scopus)

摘要

Lithium metal batteries (such as lithium–sulfur, lithium–air, solid state batteries with lithium metal anode) are highly considered as promising candidates for next-generation energy storage systems. However, the unstable interfaces between lithium anode and electrolyte definitely induce the undesired and uncontrollable growth of lithium dendrites, which results in the short-circuit and thermal runaway of the rechargeable batteries. Herein, a dual-layered film is built on a Li metal anode by the immersion of lithium plates into the fluoroethylene carbonate solvent. The ionic conductive film exhibits a compact dual-layered feature with organic components (ROCO2Li and ROLi) on the top and abundant inorganic components (Li2CO3 and LiF) in the bottom. The dual-layered interface can protect the Li metal anode from the corrosion of electrolytes and regulate the uniform deposition of Li to achieve a dendrite-free Li metal anode. This work demonstrates the concept of rational construction of dual-layered structured interfaces for safe rechargeable batteries through facile surface modification of Li metal anodes. This not only is critically helpful to comprehensively understand the functional mechanism of fluoroethylene carbonate but also affords a facile and efficient method to protect Li metal anodes.

源语言英语
文章编号1707629
期刊Advanced Materials
30
25
DOI
出版状态已出版 - 20 6月 2018

指纹

探究 'Dual-Layered Film Protected Lithium Metal Anode to Enable Dendrite-Free Lithium Deposition' 的科研主题。它们共同构成独一无二的指纹。

引用此