Driving forces of CO2 emissions from the transport, storage and postal sectors: A pathway to achieving carbon neutrality

Wen Long Shang, Yantao Ling*, Washington Ochieng, Linchuan Yang, Xing Gao, Qingzhong Ren, Yilin Chen, Mengqiu Cao

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

5 引用 (Scopus)

摘要

In tandem with the urbanisation process, China's transport sector is currently experiencing rapid development and was ranked third out of all the industrial sectors in terms of generating CO2 emissions in 2020, which poses a huge challenge to achieving carbon neutrality. Primarily using the energy consumption data from China's transport, storage and postal sectors (TSPS) and input and output data between 2007 and 2020, this study first uses the Tapio decoupling model to evaluate the decoupling effect in the TSPS. Structural decomposition analysis is then applied to explore sectoral linkages and decompose the forces driving CO2 emissions. Additionally, we explore the main determinants of the energy structure effect and final demand in terms of energy consumption and industrial sector demand. Our results show that the target sector experienced a weak decoupling, which implies that the low-carbon transformation of this sector became increasingly apparent. Factor decomposition shows that improvements in energy intensity, energy structure and the production input and output structure have contributed significantly to reducing CO2 emissions, but these gains have been largely offset by final demand, resulting in a net reduction of 27.97 million tons from 2007 to 2020. The increased usage of low carbon forms of energy, such as natural gas, is the key driver behind the emissions reduction effect in terms of the energy structure. However, the higher final demand from the construction sector and the wholesale and retail trades are the main factors that have increased CO2 emissions. By adopting a sectoral and energy structure decomposition perspective, our study can be used to provide guidance to governments seeking to pursue carbon-reduction policies to achieve carbon peak and carbon neutrality, in the TSPS in particular.

源语言英语
文章编号123226
期刊Applied Energy
365
DOI
出版状态已出版 - 1 7月 2024

指纹

探究 'Driving forces of CO2 emissions from the transport, storage and postal sectors: A pathway to achieving carbon neutrality' 的科研主题。它们共同构成独一无二的指纹。

引用此