Diffusion Bias-Compensated Feature Sparse LMS Algorithms Over Networks

Ziyi Wang, Lijuan Jia

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

In recent years, distributed strategies are widely used in sparse parameter estimation of FIR filter. In some cases, the parameter may be non-zero only in one or several regions, meanwhile, if the input signal is polluted by noise, using traditional least-mean-square algorithm to estimate the parameter is biased. We propose the bias-compensated feature sparse least-mean-square algorithm in this paper, for exploiting the sparsity feature of the system and removing the bias by noisy. The superiority of our algorithm over the traditional methods is shown by the simulation results.

源语言英语
主期刊名Proceeding - 2021 China Automation Congress, CAC 2021
出版商Institute of Electrical and Electronics Engineers Inc.
6311-6314
页数4
ISBN(电子版)9781665426473
DOI
出版状态已出版 - 2021
活动2021 China Automation Congress, CAC 2021 - Beijing, 中国
期限: 22 10月 202124 10月 2021

出版系列

姓名Proceeding - 2021 China Automation Congress, CAC 2021

会议

会议2021 China Automation Congress, CAC 2021
国家/地区中国
Beijing
时期22/10/2124/10/21

指纹

探究 'Diffusion Bias-Compensated Feature Sparse LMS Algorithms Over Networks' 的科研主题。它们共同构成独一无二的指纹。

引用此