Diagrammatic description for the categories of perverse sheaves on isotropic Grassmannians

Michael Ehrig, Catharina Stroppel*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

16 引用 (Scopus)

摘要

For each integer k≥ 4 , we describe diagrammatically a positively graded Koszul algebra Dk such that the category of finite dimensional Dk-modules is equivalent to the category of perverse sheaves on the isotropic Grassmannian of type D k or B k - 1, constructible with respect to the Schubert stratification. The algebra is obtained by a (non-trivial) “folding” procedure from a generalized Khovanov arc algebra. Properties such as graded cellularity and explicit closed formulas for graded decomposition numbers are established by elementary tools.

源语言英语
页(从-至)1455-1536
页数82
期刊Selecta Mathematica, New Series
22
3
DOI
出版状态已出版 - 1 7月 2016
已对外发布

指纹

探究 'Diagrammatic description for the categories of perverse sheaves on isotropic Grassmannians' 的科研主题。它们共同构成独一无二的指纹。

引用此