Destriping Hyperspectral Imagery by Adaptive Anisotropic Total Variation and Truncated Nuclear Norm

Ting Hu, Na Liu, Wei Li, Ran Tao*, Feng Zhang, Paul Scheunders

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Destriping is an important hyperspectral image processing procedure. Many variation-based methods show adequate destriping performance. However, global variation constraints cause loss of texture information in unstriped image regions. To alleviate this effect, we propose an adaptive anisotropy total variation method to adaptively smoothen the striped regions. Furthermore, considering the highly linear relationship among stripes, we introduce, for the first time, the truncated nuclear norm to constrain the rank of the stripes to 1. When combining the adaptive anisotropy total variation and the truncated nuclear norm, a hyperspectral image destriping model is established, which can easily be solved by the alternating direction method of multipliers (ADMM). Experiments demonstrate the effectiveness and superiority of the proposed destriping method.

源语言英语
主期刊名2021 11th Workshop on Hyperspectral Imaging and Signal Processing
主期刊副标题Evolution in Remote Sensing, WHISPERS 2021
出版商IEEE Computer Society
ISBN(电子版)9781665436014
DOI
出版状态已出版 - 24 3月 2021
活动11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2021 - Amsterdam, 荷兰
期限: 24 3月 202126 3月 2021

出版系列

姓名Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing
2021-March
ISSN(印刷版)2158-6276

会议

会议11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, WHISPERS 2021
国家/地区荷兰
Amsterdam
时期24/03/2126/03/21

指纹

探究 'Destriping Hyperspectral Imagery by Adaptive Anisotropic Total Variation and Truncated Nuclear Norm' 的科研主题。它们共同构成独一无二的指纹。

引用此